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Electron trapping nonlinearities in SRS have attracted
significant attention in recent years

Electron trapping nonlinearities:

• inflation1-2.

• frequency shift3-5.

• modulational instability6.

• Langmuir-wave self-focusing7-8.

passing

trapped

separatrix

detrapping process
Trapping is effective only if electrons resonant

w/ plasma wave complete ~ one bounce
orbit before being detrapped.

Detrapping processes:
• Speckle sideloss, endloss (geometric

effects).
• Collisions: both electron-electron and

electron-ion treated together.
•  SSD (temporal decorrelation).

e-

1H. X. Vu, D. F. DuBois, and B. Bezzerides; PRL 86, 4306 (2001);   2D.S. Montgomery et al., Phys. Rev. Lett. 87, 155001 (2001);
3G. J. Morales and T. M. O’Neil, PRL 28, 417 (1972);   4D. Bénisti, D. J. Strozzi, L. Gremillet, PoP 15, 030701 (2008);
5J.L. Kline et al., PRL 94, 175003 (2005);   6S. Brunner and E. J. Valeo, PRL 93,145003 (2004);  7L. Yin, B. J. Albright, et al., PRL 99, 265004 (2007);
8 H. A. Rose and L. Yin, PoP 15, 042311 (2008)

Ref. 2
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Bounce number = number of bounce orbits resonant
electrons complete before being detrapped

Bounce number1: bounce orbits a resonant e-
completes before it’s detrapped.

Bounce period:

Sum rates for each detrapping process:
probability e- detrapped in time dt =
sum of prob. detrapped by each process
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1D. J. Strozzi, E. A. Williams, A.  B. Langdon, and A. Bers; Phys. Plasmas 14, 013104 (2007).
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 e-folding decay time for a feature in f is τe = 1/νK.
 For collisional loss, effective νK depends on wave amplitude δN.

Detrapping due to speckle sideloss, and perhaps collisions, can
be approximately modeled in 1D by a Krook operator
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Trapping threshold for “NIF inner SRS” parameters from 1D
Vlasov simulations with ELVIS code

No Krook: Trapping
threshold: speckle endloss

νK=0 and 10-4 points

With Krook;  I0=1015 W/cm2

 “NIF inner SRS” parameters: ne/nc = 0.115,  Te = 2.1 keV;  kepw λD=0.275.
 Backscattered seed: I1/I0 = 10-6; bandwidth 0.04ωp.
 Focusing factor: FWHM = 181λ0 ( = 5F2λ0 for F=6).
! 

"t f = #K $ nˆ f 
0
% f[ ]

Absolute instability threshold: Iab = 2·1015 W/cm2

Krook operator

νLandau = 0.006ωp

= next page
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Time-dependent reflectivites and bounce numbers for “NIF inner
SRS” parameters: NB = 1 is a decent estimate for inflation

νK=2·10-3 νK=4·10-3 νK=6·10-3

log10(NB) NB (linear) NB (linear)
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 Speckle diameter L ≈ Fλ0; lifetime of resonant e- w/ transverse speed ve:

  Kinetic calculations by Ed Williams [prior talk] shows the time for 1/e of the
particles with a given longitudinal velocity to leave a cylinder of diameter L is:

2D: τe2 = 0.88 L/ve 3D: τe3 = 0.48 L/ve

 Rose 3D calculations show, 50% reduction in transit-time damping for τe3,tt ≈ L/ve.

 NIF example: F=8, λ0=351 nm,  τe3= 0.10 ps / Te,kV
1/2

 Using τe3 and L = Fλ0:

Detrapping due to speckle sideloss
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LW damping reduction is not a sensitive function of kλD, but 2D≠3D

Transit time damping decreases
faster in 2D than 3D
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!side loss ~ ve (Langmuir wave scale length)

Calculation of nonlinear transit-time damping in finite speckle by
Rose give NB≈1 for significant damping reduction
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• Collision operator:

• Ed Williams analysis [prior talk]: time for half e- to escape:

• Detrapping rate (= e-fold time):

• Bounce number:

Electron-electron and electron-ion collisions provide a threshold,
which we compute in a unified way
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Rose collisions analysis: e-e collisions weakly modify the
transit-time (Landau) damping rate

loss of
resonance

d KE( )
dt

Transit time damping
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Distribution for BGK mode,
used to calculate heating rate

When e-e heating rate ~ transit-time damping rate, e-e heating matters
when trapping has reduced t-t damping rate by 50% (rough inflation criterion).

e-e collisions
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SSD imposes a very low threshold due to temporal decorrelation
of pump field, will not affect trapping
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Much lower than thresholds due to
sideloss or collisions.

Approximate intensity auto-correlation time, in blue (3ω).
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Trapping threshold for sideloss usually dominant, but
collisions can be larger in high-Z material

dNsl sideloss
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NIF design “test24”: Rev 3, Trad = 300 eV, CH ablator, at 15.5 ns
(peak power)

ne/nc Te (keV)

matching kλD Zbar

0.6

0.4

0.2

pF3D run: srs
matching:  ne=0.105nc,
Te=5.2 keV
-> kλD=0.44

Design by D. Callahan (LLNL)

gold “bubble” due
to outer beam

50 o outer cone
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“test24” (300 eV, CH ablator): collisions matter for threshold in
high-Z material

δNjoint (sideloss+collisions) δNjoint / δNsideloss:
sideloss within 2x of joint threshold

0.02

0.01
0.005
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pF3D backscatter simulation on 50o cone of “test24”
design: full beam path length and

SRS light wave intensity (a.u.)

ne/nc

log10(δn/ne) SRS Langmuir wave

pF3D run “tg50t24_l01”
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pF3D 50o cone run: bounce number well below threshold of ~ 1;
trapping seems to not be a concern

NB (sideloss and collisions) NB > 0.5NB > 0.1
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But there may be brief times when intense speckles do inflate.
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Summary and other talks

 NB bounce number: ≈1 for trapping nonlinearity in SRS Langmuir waves.
• Includes speckle sideloss and collisions.

 Speckle sideloss: typically the dominant detrapping mechanism, but collisions
can matter in high-Z plasmas.

 SSD: too slow to affect trapping for Langmuir-wave amplitudes δn/ne > 10-6.

 NIF: Rev 3, Trad = 300 eV, CH ablator, outer (50o) beam:
• Trapping threshold: Langmuir wave δn/ne > 5·10-3.
• pF3D simulations give amplitudes generally far below this; very few points

having bounce numbers above 0.5.

 Inner beam: under investigation; SRS generally more active than on outer beam.

Other related SRS presentations:
• Dodd: poster Tues. night
• Everything this session: Langdon, Yin, Williams, Vu
• Fahlen, Winjum posters


